Concrete Curing

Sponsored Links :

Concrete Curing – This article is about Concrete Curing. In this article we are trying to provide you complete information about Concrete Curing. We have arranged the information in this post to make you understand it easily. We hope that you can understand it well. Please check the information below.

concrete curing

Concrete Curing

A common misconception is that concrete dries as it sets, but the opposite is true – damp concrete sets better than dry concrete. In other words, cement is “hydraulic”: water allows it to gain strength. Too much water is counterproductive, but too little water is deleterious. Curing allows concrete to achieve optimal strength and hardness. Curing is the hydration process that occurs after the concrete has been placed. In chemical terms, curing allows calcium-silicate hydrate (C-S-H) to form. To gain strength and harden fully, concrete curing requires time. In around 4 weeks, typically over 90% of the final strength is reached, although strengthening may continue for decades. The conversion of calcium hydroxide in the concrete into calcium carbonate from absorption of CO2 over several decades further strengthens the concrete and makes it more resistant to damage. This carbonation reaction, however, lowers the pH of the cement pore solution and can corrode the reinforcement bars.

Sponsored Links :

Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained sufficient strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three years. It depends on cross-section dimension of elements and conditions of structure exploitation.

Properly curing concrete leads to increased strength and lower permeability and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing or overheating due to the exothermic setting of cement. Improper curing can cause scaling, reduced strength, poor abrasion resistance and cracking.

During the curing period, concrete is ideally maintained at controlled temperature and humidity. To ensure full hydration during curing, concrete slabs are often sprayed with “curing compounds” that create a water-retaining film over the concrete. Typical films are made of wax or related hydrophobic compounds. After the concrete is sufficiently cured, the film is allowed to abrade from the concrete through normal use.

Traditional conditions for curing involve by spraying or ponding the concrete surface with water. The picture to the right shows one of many ways to achieve this, ponding – submerging setting concrete in water and wrapping in plastic to prevent dehydration. Additional common curing methods include wet burlap and/or plastic sheeting covering the fresh concrete.

So that is all about Concrete Curing. We think that it is good information about Concrete Curing. We hope that this information is useful for you. Please share if you think that this information can be useful for others. If you need more article related to Concrete Curing you can simply subscribe this blog. Thanks for visiting and have a nice browsing.

Leave a Reply